Pinky Rani

Assistant Professor (Guest Faculty)
Department of Economics
Maharaja College
Veer Kunwar Singh University, Ara
Class: B.A. Economics (Sem-2nd)
Paper: MIC-2
Topic: Chain rule of differentiation
Date: 15-04-2024

Chain Rule of Differentiation

If a function $y=f(x)=g(u)$ and if $u=h(x)$, then the chain rule for differentiation is defined as;

$$
d y / d x=(d y / d u) \times(d u / d x)
$$

This rule is majorly used in the method of substitution where we can perform differentiation of composite functions.

Let's have a look at the examples given below for better understanding of the chain rule differentiation of functions.

Example 1:

Differentiate $f(x)=\left(x^{4}-1\right)^{50}$

Solution:

Given,
$\mathrm{f}(\mathrm{x})=\left(\mathrm{x}^{4}-1\right)^{50}$
Let $\mathrm{g}(\mathrm{x})=\mathrm{x}^{4}-1$ and $\mathrm{n}=50$
$u(t)=t^{50}$

Thus, $\mathrm{t}=\mathrm{g}(\mathrm{x})=\mathrm{x}^{4}-1$
$\mathrm{f}(\mathrm{x})=\mathrm{u}(\mathrm{g}(\mathrm{x}))$
According to chain rule,
$\mathrm{df} / \mathrm{dx}=(\mathrm{du} / \mathrm{dt}) \times(\mathrm{dt} / \mathrm{dx})$
Here,

$$
\begin{aligned}
& d u / d t=d / d t(t 50)=50 t^{49} \\
& d t / d x=d / d x g(x) \\
& =d / d x\left(x^{4}-1\right) \\
& =4 x^{3}
\end{aligned}
$$

Thus, $\mathrm{df} / \mathrm{dx}=50 \mathrm{t}^{49} \times\left(4 \mathrm{x}^{3}\right)$
$=50\left(\mathrm{x}^{4}-1\right)^{49} \times\left(4 \mathrm{x}^{3}\right)$
$=200 \mathrm{x}^{3}\left(\mathrm{x}^{4}-1\right)^{49}$

Example 2:

Find the derivative of $f(x)=e^{\sin (2 x)}$

Solution:

Given,
$f(x)=e^{\sin (2 x)}$
Let $\mathrm{t}=\mathrm{g}(\mathrm{x})=\sin 2 \mathrm{x}$ and $\mathrm{u}(\mathrm{t})=\mathrm{e}^{\mathrm{t}}$
According to chain rule,
$\mathrm{df} / \mathrm{dx}=(\mathrm{du} / \mathrm{dt}) \times(\mathrm{dt} / \mathrm{dx})$
Here,

$$
\begin{aligned}
& \mathrm{du} / \mathrm{dt}=\mathrm{d} / \mathrm{dt}\left(\mathrm{e}^{\mathrm{t}}\right)=\mathrm{e}^{\mathrm{t}} \\
& \mathrm{dt} / \mathrm{dx}=\mathrm{d} / \mathrm{dx} \mathrm{~g}(\mathrm{x})
\end{aligned}
$$

$=\mathrm{d} / \mathrm{dx}(\sin 2 \mathrm{x})$
$=2 \cos 2 \mathrm{x}$
Thus, $d f / d x=e^{t} \times 2 \cos 2 x$
$=\mathrm{e}^{\sin (2 \mathrm{x})} \times 2 \cos 2 \mathrm{x}$
$=2 \cos (2 \mathrm{x}) \mathrm{e}^{\sin (2 \mathrm{x})}$

